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Probing Position of Test Mass
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• Continuous measurement of position

Heisenberg Uncertainty

G = c = 1 (27)

�L ⇠ Lh (28)

L ⌧ �/(2⇡) (29)

�v � h̄

2M�x
(30)

�x ·�p � h̄

2
(31)

3

➤ Heisenberg Uncertainty Principle causes Limit

➤ Can be surpassed by building quantum 

correlations, e.g., using squeezed vacuum.
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[Kimble et al.,. 2001]

[Braginsky, 1960s; Caves, Thorne, 1970s]

SSQL
h =

8ℏ
MΩ2L2



Laser Interferometer 

Gravitational-Wave Observatory



“Beyond Heisenberg Uncertainty”
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data is taken with an increased squeezing level and over
a range of squeezing angles, in order to fully characterize
the quantum noise.

FIG. 1. Simplified schematic of the experimental setup.
Squeezed vacuum (dotted red) is injected through the output
Faraday isolator, and co-propagates with the 1064 nm light
(solid red) of the main interferometer. A frequency-shifted
control field (orange) is used to sense and tune the squeeze
angle.

The Advanced LIGO detector is a Michelson
interferometer with two 4-km Fabry-Perot arms, as well
as power- and signal- recycling cavities at the input
and output ports of the beamsplitter, respectively (see
Fig. 1). The arm-cavity optics are 40 kg fused silica
mirrors, suspended as pendulums inside an ultrahigh
vacuum envelope [21]. During the measurement, 200±10
kW of 1064 nm laser power circulates in each arm
cavity. After passing through an output mode cleaner,
the di↵erential arm displacement signal (�x) is detected
as modulations of a small static field at the output
due to a deliberate mismatch in the interferometer arm
lengths [21]. The displacement signal �x is part of a
closed servo loop, which is monitored by a continuous
calibration procedure that also extracts the instrument
sensing function by driving�xmotion and measuring the
optical response. Details of the squeezed light source and
its operation, including the control method for adjusting
squeezing angle, are found in [19]. For this measurement,
injected squeezing results in 3.3 dB of squeezing and 7.7
dB of antisqueezing measured at the GW readout.

An analytic model of the displacement sensitivity in
an idealized LIGO interferometer illustrates how the
combination of ponderomotive squeezing and injected
squeezing allows us to surpass the SQL. A model which
builds on methods developed in [4, 6], with extensions to
account for losses and o↵-resonance cavities, is provided
in the Methods section. Here, the idealized model is
used for clarity. The Heisenberg uncertainty principle

applied to interferometric measurement of di↵erential
displacement, �x, sets a limit to the one-sided spectral
density of:

�x2(⌦) = S(⌦,�)(1 +K2(⌦))
~c

8k|G(⌦)|2Parm
(1)

with

K(⌦) =
32k|G(⌦)|2Parm

m⌦2c
G(⌦) ⌘

r
�c

2L

1

� + i⌦
(2)

Here Parm is the circulating arm power, k the laser
wavenumber, ⌦/2⇡ the sideband frequency of the GW
readout, and m each mirror mass. L is the arm length of
3995 m and � the signal bandwidth of 2⇡·450 Hz in LIGO.
G(⌦) is the optical field transmissivity between the arm
cavities and readout detector, making 2kG(⌦)

p
Parm the

sensing function relating �x to the emitted optical field
that modulates the homodyne readout power.

The factors S(⌦,�) and (1 +K2(⌦)) capture the
radiation pressure interaction whereby the mirror oscil-
lator motion correlates the injected optical amplitude
quadrature to the output phase quadrature, with K(⌦)
the pondermotive interaction strength. The theory of
pondermotive squeezing is detailed in Sec. IVA-B of
[4]. S(⌦,�) accounts for injection of squeezed states.
Without injected squeezing, S=1, in which case the
arm power Parm may be chosen to minimize �x(⌦) by
balancing shot noise and radiation pressure noise. The
resulting minimum �x(⌦) is the free-mass SQL for a
Michelson interferometer with a Fabry-Perot cavity in
each arm [4]:

�x2(⌦) � �x2
SQL(⌦) ⌘

8~
m⌦2

(3)

When injecting squeezed states at squeeze angle � with
squeeze factor r, the squeezing measured at the readout,
S(⌦,�), becomes:

S(⌦,�) = e�2r cos2
�
�� ✓(⌦)

�
+e2r sin2

�
�� ✓(⌦)

�
(4)

✓(⌦) = arctan(K(⌦)) (5)

�=0 is defined as the squeezing angle that reduces the
shot noise power spectral density, where ✓!0, by a factor
of e�2r.

The expression ��✓(⌦) characterizes the frequency-
dependent interaction between pondermotive and in-
jected squeezing. Eqn. 4 indicates that at frequencies
where ✓(⌦)=�, the two conspire to produce a minimum
in the quantum noise spectrum, appearing as a “dip” in
the curves of Fig. 2. Whereas the S = 1 case led to the
SQL in Eqn 3, injecting squeezed states allows the SQL
to be surpassed at measurement frequencies for which
S(⌦,�) < 1.

Fig 2 shows amplitude spectral densities of di↵erential
displacement. Exposing the sub-SQL dip requires
reliably estimating and subtracting classical noise around
40 Hz. The data are acquired as three sets of spectral
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contributions. It is generated from a 90-min average split across three 
non-contiguous time periods in which the squeezer cavity is set to be off 
resonance19, allowing the unsqueezed vacuum state to enter the inter-
ferometer. The blue trace is the modelled quantum noise contribution 
to the total noise measurement of the black trace. Subtracting the blue 
trace from the black trace gives the total classical noise contribution. 
We verify that this classical noise component is stationary and inde-
pendent of squeezer status (see discussion in the caption of Fig. 3 and 
details in Methods). The model shows that quantum noise dominates 
the interferometer sensitivity at high frequencies (Ω > γ ≈ 2π × 450 Hz), 
and accounts for 28% of the total measured noise power at 40 Hz. Of 
the remaining non-quantum noise, 24% is estimated to be coating and 
thermo-optic noise, with the rest unidentified (A. Buikema et al., manu-
script in preparation).

The green trace in Fig. 2 shows the inferred quantum noise spectrum 
with squeezing injected at φ = 35°. This angle, determined from the 
model fit, places the dip in the frequency region in which the ratio 
between the total measured reference noise and the SQL curve is mini-
mized. The green trace is calculated as the total measured displacement 
spectrum while the squeezer is engaged (brown trace), minus the clas-
sical noise contribution determined from the reference measurement. 
The purple trace shows the quantum noise model corresponding to 
φ = 35° squeezing, featuring a dip in the quantum noise that reaches 
down to 70% or 3 dB of the SQL at 40 Hz.

Squeezing measurements at three additional φ values are presented 
in Fig. 3. They show that the QRPN contributes to the motion of the 
Advanced LIGO mirrors. At each φ, the quantum noise trace is calcu-
lated by subtracting the same classical noise contribution (determined 
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Fig. 2 | Spectral density measurements revealing sub-SQL quantum noise. 
Top, spectral density of the differential displacement (∆x) noise of the 
interferometer. The grey and brown traces show the measured total noise level 
of the interferometer with the unsqueezed vacuum state (that is, the reference) 
and injected squeezing at 35°, respectively. The blue trace is the model of 
quantum noise during the reference measurement. The green trace shows the 
inferred quantum noise of the interferometer with injected squeezing at 35°, 
and its corresponding model is the purple trace. The notch feature, or ‘dip’, 
results from the ponderomotive squeezing affecting the injected optical 
squeezed states. It reaches −3 dB of the free-mass SQL (red dashed trace; given 

by equation (3)) at 40 Hz. Bottom, phase-space representation of the modelled 
quantum states entering through the dark port of the interferometer (left) and 
the output states (right), with their frequency dependence indicated. Shown 
are the cases in which the input state is unsqueezed vacuum (dashed blue line) 
and squeezing at φ = 35° (solid purple line). In the unsqueezed vacuum case, 
ponderomotive squeezing distorts the ellipse for frequencies below 100 Hz, 
increasing the QRPN in the readout quadrature (blue arrows). In the case of 
injected squeezing, the same physical process creates a state with reduced 
noise at 40 Hz (purple arrows).
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Fig. 3 | Quantum noise spectra at additional squeezing angles of 7°, 24° and 
46°. Each dataset is plotted with the same classical noise subtraction as Fig. 2, 
and with a corresponding quantum noise model curve (copper line). The model 
without injected squeezing (blue line) is plotted for comparison. The 
differences between the squeezed datasets and the reference model show that 

the QRPN contributes to the motion of the Advanced LIGO mirrors. The QRPN 
contribution can be increased and decreased as the injected state is varied. 
These data were obtained with less observing time than Fig. 2 and have 
correspondingly larger statistical fluctuations.

Quantum Correlation between light and mass, 
manipulated by injected squeezed vacuum,


 allows quantum noise below Standard Quantum Limit 
[Unruh, 1980s]

[Haocun Yu et al.,  2020]
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Levitated Quantum Objects
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work) with optimal control of the quantum trajectory. Consequently, we 
can stabilize the unconditional quantum state of a levitated nanopar-
ticle to a position uncertainty of 1.3 times the ground-state extension. 
This contrasts with cavity-based cooling schemes for levitated nanopar-
ticles24–26 that also achieve ground-state cooling27 but without requiring 
quantum-limited readout sensitivity. In comparison, real-time optimal 
control as presented here avoids the overhead of cavity stabilization 
and can tolerate frequency-dependent (coloured) environmental noise 
by including it directly in the state-space model18.

Quantum-limited measurement
We use an optical tweezer (numerical aperture (NA)  =  0.95, 
λ0 = 1,064 nm, power ≈ 300 mW, linearly polarized) to trap a silica nano-
sphere of 71.5 nm radius (mass m ≈ 2.8 × 10−18 kg) in ultrahigh vacuum 
(Fig. 1a). The particle oscillates at frequencies of Ωz/2π = 104 kHz, 
Ωy/2π = 236 kHz and Ωx/2π = 305 kHz, where we use the trapping 
beam to define a coordinate system with z along the beam axis and 
x and y parallel and perpendicular to its polarization, respectively. 
The motion in the x and y directions is stabilized by an independ-
ent parametric feedback to occupations of about 103, allowing us to 
suppress any effect due to thermal nonlinearities or measurement 
cross-coupling28 (see Supplementary Information). Most trapped 
particles carry excess charges, which allows us to apply a calibrated 
force through an external electric field. In our case, we control the 
z motion by a voltage applied to an electrode in front of the grounded 
tweezer objective29. The position of the particle is encoded in the opti-
cal phase of the scattered tweezer light, which is collected and meas-
ured by optical homodyning. We note that the position information 
contained in the scattered light is not uniformly distributed30,31. For 
the z direction, almost all information is carried by the backscattered 
photons, which is why we restrict ourselves to backplane detection 
using a fibre-based confocal microscope32. Here the collected light is 
spatially filtered by a single-mode fibre, which suppresses contribu-
tions from stray light by almost a factor of 103 while maximizing the 
overlap between the spatial modes of the scattering dipole and the 
fibre (ηm = 0.71; see Supplementary Information). Our measurement 
operates close to the quantum limit.

In the ideal case, imprecision and backaction noise of the measure-
ment saturate the Heisenberg uncertainty relation S Ω S Ω( ) ( ) =z F

I ba ℏ 
(ħ, reduced Planck constant) for all frequencies Ω (Sz,F(Ω) is the 
one-sided noise power spectral densities of position z and force F; 
see Supplementary Information). Losses degrade this performance: 
experimental losses in the detection channel (ηd) increase the impreci-
sion noise to S S η= /z z

imp I
d, whereas additional environmental interac-

tions—for example scattering of gas molecules—increase the total force 
noise to S S η= /F F

tot ba
e . This results in S Ω S Ω η( ) ( ) = /z F

imp tot ℏ , where 
η = ηdηe amounts to an effective collection efficiency of the overall 
phase-space information available from the system. In our case, the 
efficient and low-noise confocal detection scheme results in a displace-
ment sensitivity of S z

imp  = 2.0 × 10−14 m Hz−1/2, allowing us to resolve 
displacements of the size of the zero-point motion of the particle 
( ℏz mΩ= /(2 )zzpf ) at a rate of Γ z S π= /2 = 2 × 6.6 kHzzmeas zpf

2 imp  (ref. 33). 
By performing re-heating measurements at different background pres-
sures, we can directly determine the decoherence rates of the particle 
due to backaction, Γba = 2π × 18.8 kHz, and due to residual gas molecules, 
Γth = 2π × 0.6 kHz at the minimal operating pressure of 9.2 × 10−9 mbar, 
providing us with a quantum cooperativity of Cq = Γba/Γth = 30 (see Sup-
plementary Information). The resulting information collection effi-
ciency33 η = Γmeas/(Γba + Γth) = 0.34 is consistent with the value obtained 
from the independently measured loss contributions in the experi-
mental setup (see Supplementary Information). This yields an impre-
cision–backaction product of ħ η ħ/ = 1.7 , which is less than a factor 
of 2 from its fundamental limit, and more than one order of magnitude 

better than previously shown for mechanical systems at room tem-
perature22,23,34,35. Note that this also enables measurements close to the 
standard quantum limit (SQL), where the effects of imprecision and 
backaction force noise on the displacement spectrum are equal. Fig-
ure 1b shows the different noise contributions for a measurement 
performed at moderate feedback gain, where a sensitivity of 1.76 times 
the standard quantum limit is reached at frequencies of approximately 
22 kHz above resonance.
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Fig. 1 | Experimental setup. a, Scheme of the experimental setup. The particle 
is trapped in an optical tweezer (laser frequency, ω0), and oscillates in an 
ultrahigh vacuum (UHV), along the z direction, at a frequency of 
Ωz/2π = 104 kHz. The backscattered light is collected by the tweezer objective 
lens ( f1), separated from the tweezer light by the combination of a faraday 
rotator (FR) and polarizing beamsplitter (PBS) and spatially filtered by 
focusing ( f3) onto a single-mode fibre (SMF) in a confocal arrangement. It is 
then split into two paths: an in-loop homodyne detection and an out-of-loop 
heterodyne detection. The homodyne detection is used for the efficient 
position measurement (ζ(t)), and is directed to the Red Pitaya (RP) board, where 
the LQG is implemented in real time. Both the state estimate ẑ t( ( )) and the 
control signal (u(t)) can be recorded. The control signal is applied to the 
electrode in the vacuum chamber. The heterodyne detection (local oscillator 
at a frequency of ω0 ± Ωhet) uses only 5% of the light and performs an out-of-loop 
measurement of the particle’s energy via Raman scattering thermometry by 
measurement of the ratio of the Stokes and anti-Stokes scattering rates (ΓS, ΓaS). 
b, Contributions to the measured position power spectral density by the 
measurement imprecision, the measurement backaction, and the mechanical 
quantum fluctuations in the homodyne detection, at a control gain of 
gfb/2π = 2 kHz and occupation &n' = 8.3 ± 0.09. The dashed line indicates the 
frequency (approximately Ωz + 2π × 22 kHz) at which imprecision and 
backaction contribute equally to the total added noise. Here the measured 
noise is only a factor 1.76 above the standard quantum limit (SQL; red).

376 | Nature | Vol 595 | 15 July 2021

Article

conditional covariance matrix σ Σ z= ^ = 1.30z zz
ss

zpf, σ Σ p= ^ = 1.35p pp
ss

zpf 
( ℏp mΩ= /2zzpf , momentum ground-state uncertainty). To obtain the 
motional energy of the particle, we evaluate the closed-loop 
steady-state covariance matrix Σss. For increasing control gain, the 
mean particle energy !E" = ħΩz(!n" + 1/2) = ħΩztr(Σss)/2 (n, motional 
quanta) decreases and quantum ground state cooling (!n" < 1) is 
achieved for gain levels larger than 2π × 40 kHz (Fig. 2d). The estimated 
occupation values !n" agree well with the analytic solution of the LQG 
problem.

We independently confirm these results by Raman sideband ther-
mometry in an out-of-loop heterodyne measurement by mixing the 
backscattered light with a local oscillator field that is detuned from the 
trapping field by Ωhet = ±2π × 9.2 MHz (Fig. 1a). This allows us to spec-
trally resolve the Stokes and anti-Stokes components originating from 
inelastic scattering off the particle. The scattering rates of these two 
processes (ΓS, ΓaS) correspond to the powers detected in the sidebands of 
the heterodyne measurement. They contain a fundamental asymmetry 
because anti-Stokes scattering, which removes energy from the system, 
cannot occur from a motional quantum ground state. This is captured by 
a non-zero difference ΓS − ΓaS of the scattering rates that is independent 
of the thermal occupation !n" (see Supplementary Information; Fig. 3b). 
On the other hand, their ratio ΓaS/ΓS = !n"/(!n" + 1) provides us a direct, 

calibration-free measure of !n" (ref. 38). To exclude other sources of asym-
metry that may falsify the measurement, we independently characterize 
and subtract all (potentially non-white) noise sources (for example, 
optical phase noise, detector dark noise) and normalize the data to shot 
noise, thereby taking into account also the frequency-dependent detec-
tor response (see Supplementary Information). For consistency, we 
perform all measurements at both positive and negative heterodyne 
frequencies. For each gain setting, both measurements agree within 
the statistical error (Fig. 3b, c; see Supplementary Information). All data 
points are also in good agreement with the LQG theory. At maximum 
gain, we measure a maximal averaged asymmetry of 0.35, correspond-
ing to an occupation of !n" = 0.56 ± 0.02, where the error corresponds to 
1 standard deviation. This establishes quantum ground-state cooling of 
a nanoparticle from room temperature by real-time optimal quantum 
control. In the ideal case, the lowest energy can be achieved at infinite 
feedback gain and is limited by the steady-state conditional covariance 
to !n" = 0.34. In our experiment, the cooling performance is limited by 
the computational resources of the Red Pitaya, restricting the trade-off 
between the complexity of the model, the accuracy of the fixed-point 
arithmetic and the sampling frequency of the implementation. In prac-
tice, this generates a considerable risk of numerical overflow when the 
control output is increased above gfb = 2π × 200 kHz.
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Fig. 3 | Quantum optimal control. a, Heterodyne power spectral density at 
gfb/2π = 8 kHz (large narrow peaks) and gfb/2π = 110 kHz (small broad peaks), 
where we distinguish the spectral contributions from Stokes (red) and 
anti-Stokes (blue) scattering. The asymmetry of the peaks is a signature of the 
quantization of the energy levels of the harmonic oscillator. b, Statistical 
fluctuations of Stokes (red) and anti-Stokes (blue) scattering rates at 
gfb/2π = 10 kHz and gfb/2π = 200 kHz. Each point is evaluated by integrating a 
single power spectral density curve as shown in a, and normalizing by the 
average value of their difference over all of the measurements 
(!∆Γ" = !ΓS" − !ΓaS"). c, Phase space plot of the quantum trajectory of the particle 
at the steady state, for gfb/2π = 8 kHz (green), gfb/2π = 110 kHz (purple) and the 
corresponding solutions of the LQG closed-loop system (dashed red). Both 
traces display about 750 µs of evolution. Highlighted (grey) is the uncertainty 

given by the steady-state conditional covariance matrix Σ̂
ss

, as given by the 
Kalman filter. For comparison, we show the phase space volume occupied by 
the zero-point fluctuations (zpf) in dark blue. Here the data are filtered with a 
high-order bandpass (25 to 225 kHz), attenuating the contributions of the noise 
sources at high and low frequencies that are not considered by the model.  
d, Occupation at different feedback gains as estimated by the Kalman filter 
(green dots) and independently measured by heterodyne asymmetry (yellow 
circles). The magenta crosses show the four points at which 60 repeated 
measurements were performed for reduction of statistical fluctuations as in b. 
Error bars represent the standard deviation of the measured value. The solid 
line is the analytic closed-loop solution of the LQG, showing the expected 
occupancy given by our experimental parameters and their uncertainties.  
The grey area shows the cooling limit set by the efficiency of our measurement.

Magrini et al., 2021
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• “Stern-Gerlach Experiment” with large masses: is there limit on how massive a 
“quantum object” can be?  Gravity?


• Weak-force detection limited by Heisenberg Uncertainty: is there “fundamental 
quantum limit to sensitivity”? Space-time Fluctuations?

massive

object(s)

Can quantum  
superpositions form 
and evolve following 

the same laws?

distance fluctuations due to quantum gravity?

We are already observing space-time geometry around black holes and 

macroscopic objects in the quantum regime



Quantum Nature of Gravity?
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“If quantum information can pass from A to B through , then gravity must be quantum.”̂ϕ
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M4
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x4

If Gravity is classical, self-gravitating objects will not be completely quantum.

[e.g., Feynman, Lectures on Gravitation, 1957]

Effect is very weak; time scale is very long! [Kafri & Taylor, 2014]
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[Møller 1962, Rosenfeld 1963; Kibble 1976; … ; Guilini 2012; H. Yang et al., 2013]
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Quantum “Self Gravity”
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particle carries own gravity field

𝜙

Classical “Self Gravity”

𝜓

unique classical field

wave packet attracted by its own potential

𝜙

Since wavefunction  now gravitates, it becomes “physical reality”ψ
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1

2
Â

j

Mjf(xj)y(x1, . . . , xn) (62)

xZPF ⇠
s

h̄

mwDebye

⇠ 10
�12

m ⌧ alattice ⇠ 10
�10

m (63)

ih̄
∂YCM

∂t
=

"
� h̄

2r2

2M
+

1

2
Mw2

CM
x

2 +
1

2
Mw2

SN
(x � hxi)2

#
YCM (64)

w2

SN
=

Gm

12
p

px
3

ZPF

� w2

g (65)

wSi

SN
= 4 ⇥ 10

�2
s
�1 ⇡ 100 wSi

g (66)

˙̂x = p̂/M (67)

˙̂p = �Mw2

CM
x̂ � Mw2

SN
(x̂ � hx̂i) (68)

5

kh⇤ < 1 (54)

n ⇠ n1 + n2E cos 2w0t (55)

S
GW

12
= g( f )SGW (56)

S
th

12
⇠ (WT)�1/2

Sn (57)
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Will lead to experimental signatures!

Quantum correlation of light mediated by gravity

Haixing Miao,1, ⇤ Denis Martynov,1, † and Huan Yang2, 3, ‡

1School of Physics and Astronomy, and Institute for Gravitational Wave Astronomy,
University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

2Perimeter Institute for Theoretical Physics, Waterloo, ON N2L2Y5, Canada
3University of Guelph, Guelph, ON N2L3G1, Canada

We consider using the quantum correlation of light in two optomechanical cavities, which are coupled to each
other through the gravitational interaction of their end mirrors, to probe the quantum nature of gravity. The
optomechanical interaction coherently amplifies the correlation signal, and a unity signal-to-noise ratio can be
achieved within one-year integration time by using high-quality-factor, low-frequency mechanical oscillators.
Measuring the correlation can test classical models of gravity, and is an intermediate step before demonstrating
the gravity-mediated entanglement which has a more stringent requirement on the thermal decoherence rate.

Introduction.—Constructing a consistent and verifiable
quantum theory of gravity is a challenging task of mod-
ern physics [1–3], which is partially due to the di�culty in
observing quantum e↵ects of gravity. This, to certain ex-
tents, motivates some theoretical models that treat gravity as
a fundamental classical entity [4–11] or being emerged from
some yet-to-known underlying microphysics [12–15]. Prob-
ing the quantum nature of gravity experimentally is there-
fore essential for providing hints towards constructing the cor-
rect model [16, 17]. Recently, there are two experimental
proposals about demonstrating gravity-induced quantum en-
tanglement between two mesoscopic test masses in matter-
wave interferometers [18, 19], motivated by an early sugges-
tion of Feynman [20]. The setup involves two interferom-
eters located close to each other and their test masses are
entangled through the gravitational interaction. There are
some discussions regarding whether the gravity-mediated en-
tanglement in the Newtonian limit proves the quantumness
of gravity or not [21–25], because the radiative degrees of
freedom—graviton, are not directly probed in these exper-
iments. Given the lack of experimental evidence, such ex-
periments are important steps towards understanding gravity
in the quantum regime. Interestingly, they are also sensi-
tive to gravity-induced decoherence models for explaining the
quantum-to-classical transition [26–31].

The key to demonstrate the entanglement is a low thermal
decoherence rate, so the quantum coherence from the gravi-
tational interaction can build up significantly. As shown by
Eq. (25) and also Appendix A, there is an universal require-
ment on the thermal decoherence rate that is independent of
the size of the two test masses:

�mkBT  ~G⇢ . (1)

Here �m is the damping rate and also quantifies the strength
of the thermal Langevin force according to the fluctuation-
dissipation theorem [32, 33]; kB is the Boltzmann constant; T
is the environmental temperature; G is the gravitational con-
stant; ⇢ is the density of the test mass. For test masses that are

⇤ haixing@star.sr.bham.ac.uk
† dmartynov@star.sr.bham.ac.uk
‡ hyang@perimeterinstitute.ca

mechanical oscillators with resonant frequency !m, it implies

T
Qm
 1.5 ⇥ 10�18K

 
1 Hz
!m/2⇡

!  
⇢

19 g/cm3

!
, (2)

where Qm ⌘ !m/�m is the mechanical quality factor and a
density close to Tungsten or Gold is assumed. This require-
ment is beyond the state-of-the-art, and needs further experi-
mental e↵orts.

In this paper, we propose an intermediate step before
demonstrating the entanglement by using optomechanical de-
vices [34, 35] to realise gravity-mediated quantum correlation
of light, which is not constrained by Eq. (1). The setup is
shown schematically in Fig. 1. Two optomechanical cavities
are placed close to each other with their end mirrors (as the
test masses) interacting through gravity. Di↵erent from the
single-photon nonlinear regime studied by Balushi et al. [36],
we are considering the linear regime with the cavity driven
by a coherent laser, and having the light (optical field) and
the mirrors (mechanical oscillators) in Gaussian states. The
quantum correlation of light is measured by cross-correlating
the homodyne readouts of two photodetectors. With the sys-
tem being in a steady state, the signal-to-noise ratio (SNR) for
the correlation measurement grows in time. As shown later in
Eq. (18), the integration time for achieving a unity SNR is

⌧ ⇡ 1.0 year
 

n̄th/C
0.4

!  
!m/2⇡
1 Hz

!3  
106

Qm

!  
19 g/cm3

⇢

!2

, (3)

where n̄th is the thermal occupation number, and C is the op-
tomechanical cooperativity. To constrain the integration time

FIG. 1. Schematics showing the setup of two optomechanical cav-
ities with their end mirrors coupled to each other through gravity.
The quantum correlation of light is inferred by cross-correlating the
readouts of two photodiodes.
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Ĥ(t, λ), λ = λ[ |ψ⟩]
Hamiltonian depends on quantum state
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Plant + Controller

H0 + V

Measurement

Record


y(t)X̂

State

Collapse

Information

Gain

Classical Filter

C

d ̂ρ = −
i
ℏ

[Ĥ, ̂ρ]dt −
α2

8
[ ̂x, [ ̂x, ̂ρ]] +

1
2

α( ̂x ̂ρ + ̂ρ ̂x − 2⟨ ̂x⟩ ̂ρ)dW + ̂V [{y(t′￼) : t′￼< t}]

dy = α⟨x⟩dt + dW
Nonlinear, and breaks linear superposition!
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Measure!

Each “actuator” generates gravity according to results inside its past light cone.

Fundamental Questions Remain: What is a Measurement?

Light that is “lost”, are they measured?  which variables measured?

Bassam Helou

2017 & 2019
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4

the pre/post-selection prescription, which can be summarised
as a Lorentzian peak in the spectrum of the outgoing field
around wq as:

DSa2a2(w) ⇡ b (b +2)
g2

m
g2

m +4(w �wq)2 , b =
a2

Mh̄gmwq
,

(4)
where a high Q�oscillator is assumed, i.e gm ⌧ wq.

While for the post-selection prescription, the signature of
the SN theory is, on the contrary, a Lorentzian dip in the spec-
trum of the outgoing field around wq:

DSa2a2(w) ⇡ �b (b +2)
g2

m
(1+b )2g2

m +4(w �wq)2 . (5)

Besides, the outgoing field spectrum has another peak at
around wm. The SN observational feature at around wq is be-
cause the conditional mean position of the mechanical quan-
tum state under the continuous quantum measurement does
not coincide with the hx̂ipre/post under the pre/post selection
prescription. This means that during the quantum measure-
ment process, the conditional quantum expectation value of
mechanical state feels a restoring force µ �mw2

SN(hx̂ipre/post �
hx̂ic) (see Fig. 3).

As we shall see in the next section, the outgoing field spec-
trum in the case of the causal-conditional prescription will be
different: the peak/dip around wq does not exist. We plot the
comparison of the outgoing field spectrum of these three dif-
ferent quantum measurement prescriptions in Fig. 4. The nu-
merical analysis is based on the sampling parameters listed in
Tab. I.

Parameters Symbol Value
Mirror mass M 0.2 kg

Mirror bare frequency wm/(2p) 4⇥10�3 Hz
SN frequency wSN/(2p) 7.8⇥10�2 Hz
Quality factor Qm 107

Mechanical damping gm/(2p) 4⇥10�10 Hz
Optical wavelength l 1064nm

Cavity Finesse F 300
Intra-cavity power Pcav 480nW

TABLE I. The parameters of the optomechanical system with a single
mirror exerted by its semi-classical self-gravity.

B. Causal-conditional prescription for the semi-classical
self-gravity

1. Output optical spectrum

Following the above causal-conditional prescription, we
can obtain the following stochastic master equation (SME) for
describing the evolution of conditional mechanical state un-
der continuous quantum measurement in the SN theory. The
projective measurement result of the optical quadrature fields
at homodyne angle q is given as ŷq = 1/

p
Dt

R t+Dt
t âq (t 0)dt 0,

which satisfies: yq = ahx̂isinq
p

Dt + DW/
p

2Dt. For later
use, we redefine ãq as ŷq /

p
Dt thereby:

ãq = ahx̂ic sinq +dW/
p

2dt. (6)

The corresponding stochastic master equation is:

dr̂ =� i
h̄
[Ĥ0, r̂]dt � a2

4
[x̂, [x̂, r̂]]dt � iap

2
cosq [x̂, r̂]dW

+
ap

2
sinq{x̂�hx̂i, r̂}dW � igm

2h̄
{x̂,{p̂, r̂}}dt,

(7)

where Ĥ0 = Ĥ + ĤSN is the free mechanical Hamiltonian (in-
cluding its self-gravitational interaction) in the SN theory, the
second and third term on the right hand side (r.h.s) is the stan-
dard Lindblad term and the Ito-term, respectively. The last
term describes the mechanical thermal dissipation. This me-
chanical dissipation term is important since the system can not
reach a stationary stochastic process without it. Physically it
is due to the fact that the interaction of light field with the
mechanical motion (when the pumping field is on-resonance
with the cavity) can only re-distribute quantum information
without dynamical energy exchange.

Using Eq. (7), the conditional expectation and variance of x̂
and p̂ are respectively given as:

dhx̂ic =
hp̂ic

M
dt +

p
2aV c

xx sinqdW,

dhp̂ic = �Mw2
mhxicdt � gmhp̂icdt +

p
2aV c

xp sinqdW

+
h̄ap

2
cosqdW,

(8)

and

V̇ c
xx =

2V c
xp

M
�2a2 sin2 qV c2

xx ,

V̇ c
xp =

V c
pp

M
+Mw2

qV c
xx �2a2 sin2 qV c

xxV
c
xp �a2 sinq cosq h̄Vxx,

V̇ c
pp = �2Mw2

qV c
xp �2a2 sin2 qV c2

xp �2a2 sinq cosq h̄Vxp

� a2 cos2 q h̄2

2
+

1
2

a2h̄2,

(9)

where wq ⌘
q

w2
m +w2

SN.
It is important to note that the oscillation frequency of the

conditional expectation value of the mechanical displacement
hx̂ic is wm rather than wq under the causal-conditional pre-
scription, which is different from the pre/post-selection pre-
scription. This can be understood from the fact that the grav-
itational field at time t in this case is sourced by the condi-
tional mechanical state |ym(t)ic, which also follows a ran-
dom trajectory. The hxic in this case is always located at the
potential minimum thereby feeling no restoring force. In con-
trast, the gravitational field under the pre/post-selection pre-
scriptions is sourced by the deterministic evolving mechanical
state Û|ym(ti/ f )i|ym(ti/ f )i, therefore feels a restoring force as
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stochastic evolution of conditional expectations

deterministic evolution of conditional variances

Eigenfrequency for mean 
values same as before


Uncertainties modified 
ωm → ωq = ω2

m + ω2
SN

x

p

[Yubao Liu, Haixing Miao, Yanbei Chen and Yiqiu Ma, 2022]
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Quantum correlation of light mediated by gravity

Haixing Miao,1, ⇤ Denis Martynov,1, † and Huan Yang2, 3, ‡

1School of Physics and Astronomy, and Institute for Gravitational Wave Astronomy,
University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

2Perimeter Institute for Theoretical Physics, Waterloo, ON N2L2Y5, Canada
3University of Guelph, Guelph, ON N2L3G1, Canada

We consider using the quantum correlation of light in two optomechanical cavities, which are coupled to each
other through the gravitational interaction of their end mirrors, to probe the quantum nature of gravity. The
optomechanical interaction coherently amplifies the correlation signal, and a unity signal-to-noise ratio can be
achieved within one-year integration time by using high-quality-factor, low-frequency mechanical oscillators.
Measuring the correlation can test classical models of gravity, and is an intermediate step before demonstrating
the gravity-mediated entanglement which has a more stringent requirement on the thermal decoherence rate.

Introduction.—Constructing a consistent and verifiable
quantum theory of gravity is a challenging task of mod-
ern physics [1–3], which is partially due to the di�culty in
observing quantum e↵ects of gravity. This, to certain ex-
tents, motivates some theoretical models that treat gravity as
a fundamental classical entity [4–11] or being emerged from
some yet-to-known underlying microphysics [12–15]. Prob-
ing the quantum nature of gravity experimentally is there-
fore essential for providing hints towards constructing the cor-
rect model [16, 17]. Recently, there are two experimental
proposals about demonstrating gravity-induced quantum en-
tanglement between two mesoscopic test masses in matter-
wave interferometers [18, 19], motivated by an early sugges-
tion of Feynman [20]. The setup involves two interferom-
eters located close to each other and their test masses are
entangled through the gravitational interaction. There are
some discussions regarding whether the gravity-mediated en-
tanglement in the Newtonian limit proves the quantumness
of gravity or not [21–25], because the radiative degrees of
freedom—graviton, are not directly probed in these exper-
iments. Given the lack of experimental evidence, such ex-
periments are important steps towards understanding gravity
in the quantum regime. Interestingly, they are also sensi-
tive to gravity-induced decoherence models for explaining the
quantum-to-classical transition [26–31].

The key to demonstrate the entanglement is a low thermal
decoherence rate, so the quantum coherence from the gravi-
tational interaction can build up significantly. As shown by
Eq. (25) and also Appendix A, there is an universal require-
ment on the thermal decoherence rate that is independent of
the size of the two test masses:

�mkBT  ~G⇢ . (1)

Here �m is the damping rate and also quantifies the strength
of the thermal Langevin force according to the fluctuation-
dissipation theorem [32, 33]; kB is the Boltzmann constant; T
is the environmental temperature; G is the gravitational con-
stant; ⇢ is the density of the test mass. For test masses that are

⇤ haixing@star.sr.bham.ac.uk
† dmartynov@star.sr.bham.ac.uk
‡ hyang@perimeterinstitute.ca

mechanical oscillators with resonant frequency !m, it implies

T
Qm
 1.5 ⇥ 10�18K

 
1 Hz
!m/2⇡

!  
⇢

19 g/cm3

!
, (2)

where Qm ⌘ !m/�m is the mechanical quality factor and a
density close to Tungsten or Gold is assumed. This require-
ment is beyond the state-of-the-art, and needs further experi-
mental e↵orts.

In this paper, we propose an intermediate step before
demonstrating the entanglement by using optomechanical de-
vices [34, 35] to realise gravity-mediated quantum correlation
of light, which is not constrained by Eq. (1). The setup is
shown schematically in Fig. 1. Two optomechanical cavities
are placed close to each other with their end mirrors (as the
test masses) interacting through gravity. Di↵erent from the
single-photon nonlinear regime studied by Balushi et al. [36],
we are considering the linear regime with the cavity driven
by a coherent laser, and having the light (optical field) and
the mirrors (mechanical oscillators) in Gaussian states. The
quantum correlation of light is measured by cross-correlating
the homodyne readouts of two photodetectors. With the sys-
tem being in a steady state, the signal-to-noise ratio (SNR) for
the correlation measurement grows in time. As shown later in
Eq. (18), the integration time for achieving a unity SNR is

⌧ ⇡ 1.0 year
 

n̄th/C
0.4

!  
!m/2⇡
1 Hz

!3  
106

Qm

!  
19 g/cm3

⇢

!2

, (3)

where n̄th is the thermal occupation number, and C is the op-
tomechanical cooperativity. To constrain the integration time

FIG. 1. Schematics showing the setup of two optomechanical cav-
ities with their end mirrors coupled to each other through gravity.
The quantum correlation of light is inferred by cross-correlating the
readouts of two photodiodes.
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2

Length fluctuations with Planckian white noise.

In this paper we consider a toy experimental set-up,
shown in Fig. 1, in which the arm length L of an
interferometer is measured after a single light crossing.
In this idealized scenario the length fluctuations �L due
to quantum fluctuations in the metric is given by

�L(t) =
1

2

Z L

0
dz h(t+z�L) (1)

where h ⌘ hzz is the metric component along the light
beam propagation (see e.g. [15]). The magnitude of these
length fluctuations is normally expressed in terms of the
power spectral density (PSD)

S(!, t) =

Z 1

�1
d⌧

⌧
�L(t)

L

�L(t � ⌧)

L

�
e�i!⌧ . (2)

Let us first consider a simple model with a white noise
signal of Planckian amplitude

⌦
h(t+z1�L)h(t+z2�L�⌧)

↵
= Clp�(⌧ +z1�z2), (3)

where lp =
p

8⇡GN . This leads to a PSD of the form

S(!) =
Clp
4

sin2 !L

!2L2
. (4)

In this simple model the length fluctuations h�L2i obey
⌧

�L2(t)

L2

�
=

1

2⇡

Z 1

�1
d! S(!) =

Clp
8L

, (5)

and thus grow linearly with L [8–12]. This signal could
in principle be observable, since the peak sensitivity for
gravitational wave interferometers is right around the
Planck scale: S(!, t) . lp. Over the next sections our
goal will be to show how some of the generic behavior in
Eqs. 4, 5 can arise from a holographic model, motivat-
ing the size of the constant C, with crucial observational
e↵ects arising from angular correlations. In addition, in
experiments like LIGO and Virgo a typical photon tra-
verses the interferometer arm multiple times before being
measured. In this paper we continue to focus on our sim-
ple set up and defer the detailed discussion of multiple
crossings to future work.

Holographic Scenario and Basic Postulates.

Our aim in the following is to derive a result similar to
Eq. 5 from a holographic scenario, in which the holo-
graphic surface is fixed by the light path of a photon, as
depicted in Fig. 1. In order to clearly delineate between
theoretical input and observational consequences, we will
state here our three basic postulates:

1. Statistical independence of small scale fluctuations.

We postulate that the length fluctuation �L can be
obtained by subdividing the interferometer arm in
segments and summing over the statistically inde-
pendent length fluctuations of each segment. This
postulate is equivalent to the Ansatz in Eq. 3 and
implies that length fluctuations, �L2, accumulate
linearly with distance, as shown in Eq. 5.

signal	beam

L
<latexit sha1_base64="4y+op8NyTB1ylYFUF065s+H/YlA=">AAAB6HicbZA9SwNBEIbn4leMX1FLm8UgWIU7EbQM2lhYJGA+IDnC3mYuWbO3d+zuCeHIL7CxUMTWn2Tnv3GTXKGJLyw8vDPDzrxBIrg2rvvtFNbWNza3itulnd29/YPy4VFLx6li2GSxiFUnoBoFl9g03AjsJAppFAhsB+PbWb39hErzWD6YSYJ+RIeSh5xRY63Gfb9ccavuXGQVvBwqkKveL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWtR0gi1n80XnZIz6wxIGCv7pCFz9/dERiOtJ1FgOyNqRnq5NjP/q3VTE177GZdJalCyxUdhKoiJyexqMuAKmRETC5QpbnclbEQVZcZmU7IheMsnr0LroupZblxWajd5HEU4gVM4Bw+uoAZ3UIcmMEB4hld4cx6dF+fd+Vi0Fpx85hj+yPn8AaOLjNA=</latexit><latexit sha1_base64="4y+op8NyTB1ylYFUF065s+H/YlA=">AAAB6HicbZA9SwNBEIbn4leMX1FLm8UgWIU7EbQM2lhYJGA+IDnC3mYuWbO3d+zuCeHIL7CxUMTWn2Tnv3GTXKGJLyw8vDPDzrxBIrg2rvvtFNbWNza3itulnd29/YPy4VFLx6li2GSxiFUnoBoFl9g03AjsJAppFAhsB+PbWb39hErzWD6YSYJ+RIeSh5xRY63Gfb9ccavuXGQVvBwqkKveL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWtR0gi1n80XnZIz6wxIGCv7pCFz9/dERiOtJ1FgOyNqRnq5NjP/q3VTE177GZdJalCyxUdhKoiJyexqMuAKmRETC5QpbnclbEQVZcZmU7IheMsnr0LroupZblxWajd5HEU4gVM4Bw+uoAZ3UIcmMEB4hld4cx6dF+fd+Vi0Fpx85hj+yPn8AaOLjNA=</latexit><latexit sha1_base64="4y+op8NyTB1ylYFUF065s+H/YlA=">AAAB6HicbZA9SwNBEIbn4leMX1FLm8UgWIU7EbQM2lhYJGA+IDnC3mYuWbO3d+zuCeHIL7CxUMTWn2Tnv3GTXKGJLyw8vDPDzrxBIrg2rvvtFNbWNza3itulnd29/YPy4VFLx6li2GSxiFUnoBoFl9g03AjsJAppFAhsB+PbWb39hErzWD6YSYJ+RIeSh5xRY63Gfb9ccavuXGQVvBwqkKveL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWtR0gi1n80XnZIz6wxIGCv7pCFz9/dERiOtJ1FgOyNqRnq5NjP/q3VTE177GZdJalCyxUdhKoiJyexqMuAKmRETC5QpbnclbEQVZcZmU7IheMsnr0LroupZblxWajd5HEU4gVM4Bw+uoAZ3UIcmMEB4hld4cx6dF+fd+Vi0Fpx85hj+yPn8AaOLjNA=</latexit><latexit sha1_base64="4y+op8NyTB1ylYFUF065s+H/YlA=">AAAB6HicbZA9SwNBEIbn4leMX1FLm8UgWIU7EbQM2lhYJGA+IDnC3mYuWbO3d+zuCeHIL7CxUMTWn2Tnv3GTXKGJLyw8vDPDzrxBIrg2rvvtFNbWNza3itulnd29/YPy4VFLx6li2GSxiFUnoBoFl9g03AjsJAppFAhsB+PbWb39hErzWD6YSYJ+RIeSh5xRY63Gfb9ccavuXGQVvBwqkKveL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWtR0gi1n80XnZIz6wxIGCv7pCFz9/dERiOtJ1FgOyNqRnq5NjP/q3VTE177GZdJalCyxUdhKoiJyexqMuAKmRETC5QpbnclbEQVZcZmU7IheMsnr0LroupZblxWajd5HEU4gVM4Bw+uoAZ3UIcmMEB4hld4cx6dF+fd+Vi0Fpx85hj+yPn8AaOLjNA=</latexit>

end
mirror

beam	
splitter

end
mirror

output

t

t � L
<latexit sha1_base64="Nv4+es+YfAUBEioR0u6u/RruPjA=">AAAB6nicbZA9SwNBEIbn4leMX1FLm8Ug2BjuRNAyaGNhEdF8QHKEvc1esmRv79idE8KRn2BjoYitv8jOf+MmuUITX1h4eGeGnXmDRAqDrvvtFFZW19Y3ipulre2d3b3y/kHTxKlmvMFiGet2QA2XQvEGCpS8nWhOo0DyVjC6mdZbT1wbEatHHCfcj+hAiVAwitZ6wLO7XrniVt2ZyDJ4OVQgV71X/ur2Y5ZGXCGT1JiO5yboZ1SjYJJPSt3U8ISyER3wjkVFI278bLbqhJxYp0/CWNunkMzc3xMZjYwZR4HtjCgOzWJtav5X66QYXvmZUEmKXLH5R2EqCcZkejfpC80ZyrEFyrSwuxI2pJoytOmUbAje4snL0DyvepbvLyq16zyOIhzBMZyCB5dQg1uoQwMYDOAZXuHNkc6L8+58zFsLTj5zCH/kfP4A4n2NhQ==</latexit><latexit sha1_base64="Nv4+es+YfAUBEioR0u6u/RruPjA=">AAAB6nicbZA9SwNBEIbn4leMX1FLm8Ug2BjuRNAyaGNhEdF8QHKEvc1esmRv79idE8KRn2BjoYitv8jOf+MmuUITX1h4eGeGnXmDRAqDrvvtFFZW19Y3ipulre2d3b3y/kHTxKlmvMFiGet2QA2XQvEGCpS8nWhOo0DyVjC6mdZbT1wbEatHHCfcj+hAiVAwitZ6wLO7XrniVt2ZyDJ4OVQgV71X/ur2Y5ZGXCGT1JiO5yboZ1SjYJJPSt3U8ISyER3wjkVFI278bLbqhJxYp0/CWNunkMzc3xMZjYwZR4HtjCgOzWJtav5X66QYXvmZUEmKXLH5R2EqCcZkejfpC80ZyrEFyrSwuxI2pJoytOmUbAje4snL0DyvepbvLyq16zyOIhzBMZyCB5dQg1uoQwMYDOAZXuHNkc6L8+58zFsLTj5zCH/kfP4A4n2NhQ==</latexit><latexit sha1_base64="Nv4+es+YfAUBEioR0u6u/RruPjA=">AAAB6nicbZA9SwNBEIbn4leMX1FLm8Ug2BjuRNAyaGNhEdF8QHKEvc1esmRv79idE8KRn2BjoYitv8jOf+MmuUITX1h4eGeGnXmDRAqDrvvtFFZW19Y3ipulre2d3b3y/kHTxKlmvMFiGet2QA2XQvEGCpS8nWhOo0DyVjC6mdZbT1wbEatHHCfcj+hAiVAwitZ6wLO7XrniVt2ZyDJ4OVQgV71X/ur2Y5ZGXCGT1JiO5yboZ1SjYJJPSt3U8ISyER3wjkVFI278bLbqhJxYp0/CWNunkMzc3xMZjYwZR4HtjCgOzWJtav5X66QYXvmZUEmKXLH5R2EqCcZkejfpC80ZyrEFyrSwuxI2pJoytOmUbAje4snL0DyvepbvLyq16zyOIhzBMZyCB5dQg1uoQwMYDOAZXuHNkc6L8+58zFsLTj5zCH/kfP4A4n2NhQ==</latexit><latexit sha1_base64="ck8pdC+ekZH4nUmSP+ZG7r8lEyk=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odOn4MoA7ncAFXEMIN3MEDdKALAhJ4hXdv4r15H6uuat66tDP4I+/zBzjGijg=</latexit><latexit sha1_base64="COZCATfcZI5jl6q/3DbDS+JePVU=">AAAB33icbZBLSwMxFIXv1FetVatbN8EiuLHMuNGl4MaFi4r2Ae1QMumdNjSTGZI7Qin9CW5cKOK/cue/MX0stPVA4OOchNx7okxJS77/7RU2Nre2d4q7pb3y/sFh5ajctGluBDZEqlLTjrhFJTU2SJLCdmaQJ5HCVjS6neWtZzRWpvqJxhmGCR9oGUvByVmPdHHfq1T9mj8XW4dgCVVYqt6rfHX7qcgT1CQUt7YT+BmFE25ICoXTUje3mHEx4gPsONQ8QRtO5qNO2Zlz+ixOjTua2Nz9/WLCE2vHSeRuJpyGdjWbmf9lnZzi63AidZYTarH4KM4Vo5TN9mZ9aVCQGjvgwkg3KxNDbrgg107JlRCsrrwOzcta4PjBhyKcwCmcQwBXcAN3UIcGCBjAC7zBu6e8V+9jUVfBW/Z2DH/kff4AyFCMMA==</latexit><latexit sha1_base64="COZCATfcZI5jl6q/3DbDS+JePVU=">AAAB33icbZBLSwMxFIXv1FetVatbN8EiuLHMuNGl4MaFi4r2Ae1QMumdNjSTGZI7Qin9CW5cKOK/cue/MX0stPVA4OOchNx7okxJS77/7RU2Nre2d4q7pb3y/sFh5ajctGluBDZEqlLTjrhFJTU2SJLCdmaQJ5HCVjS6neWtZzRWpvqJxhmGCR9oGUvByVmPdHHfq1T9mj8XW4dgCVVYqt6rfHX7qcgT1CQUt7YT+BmFE25ICoXTUje3mHEx4gPsONQ8QRtO5qNO2Zlz+ixOjTua2Nz9/WLCE2vHSeRuJpyGdjWbmf9lnZzi63AidZYTarH4KM4Vo5TN9mZ9aVCQGjvgwkg3KxNDbrgg107JlRCsrrwOzcta4PjBhyKcwCmcQwBXcAN3UIcGCBjAC7zBu6e8V+9jUVfBW/Z2DH/kff4AyFCMMA==</latexit><latexit sha1_base64="TeWKrp//9N2YNvVJODblrIwOHUM=">AAAB6nicbZA9SwNBEIbn4leMX1FLm8Ug2BjubGIZtLGwiGg+IDnC3mYvWbK3d+zOCeHIT7CxUMTWX2Tnv3GTXKGJLyw8vDPDzrxBIoVB1/12CmvrG5tbxe3Szu7e/kH58Khl4lQz3mSxjHUnoIZLoXgTBUreSTSnUSB5OxjfzOrtJ66NiNUjThLuR3SoRCgYRWs94MVdv1xxq+5cZBW8HCqQq9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5516KiETd+Nl91Ss6sMyBhrO1TSObu74mMRsZMosB2RhRHZrk2M/+rdVMMr/xMqCRFrtjiozCVBGMyu5sMhOYM5cQCZVrYXQkbUU0Z2nRKNgRv+eRVaF1WPcv3bqV+ncdRhBM4hXPwoAZ1uIUGNIHBEJ7hFd4c6bw4787HorXg5DPH8EfO5w/hPY2B</latexit><latexit sha1_base64="Nv4+es+YfAUBEioR0u6u/RruPjA=">AAAB6nicbZA9SwNBEIbn4leMX1FLm8Ug2BjuRNAyaGNhEdF8QHKEvc1esmRv79idE8KRn2BjoYitv8jOf+MmuUITX1h4eGeGnXmDRAqDrvvtFFZW19Y3ipulre2d3b3y/kHTxKlmvMFiGet2QA2XQvEGCpS8nWhOo0DyVjC6mdZbT1wbEatHHCfcj+hAiVAwitZ6wLO7XrniVt2ZyDJ4OVQgV71X/ur2Y5ZGXCGT1JiO5yboZ1SjYJJPSt3U8ISyER3wjkVFI278bLbqhJxYp0/CWNunkMzc3xMZjYwZR4HtjCgOzWJtav5X66QYXvmZUEmKXLH5R2EqCcZkejfpC80ZyrEFyrSwuxI2pJoytOmUbAje4snL0DyvepbvLyq16zyOIhzBMZyCB5dQg1uoQwMYDOAZXuHNkc6L8+58zFsLTj5zCH/kfP4A4n2NhQ==</latexit><latexit sha1_base64="Nv4+es+YfAUBEioR0u6u/RruPjA=">AAAB6nicbZA9SwNBEIbn4leMX1FLm8Ug2BjuRNAyaGNhEdF8QHKEvc1esmRv79idE8KRn2BjoYitv8jOf+MmuUITX1h4eGeGnXmDRAqDrvvtFFZW19Y3ipulre2d3b3y/kHTxKlmvMFiGet2QA2XQvEGCpS8nWhOo0DyVjC6mdZbT1wbEatHHCfcj+hAiVAwitZ6wLO7XrniVt2ZyDJ4OVQgV71X/ur2Y5ZGXCGT1JiO5yboZ1SjYJJPSt3U8ISyER3wjkVFI278bLbqhJxYp0/CWNunkMzc3xMZjYwZR4HtjCgOzWJtav5X66QYXvmZUEmKXLH5R2EqCcZkejfpC80ZyrEFyrSwuxI2pJoytOmUbAje4snL0DyvepbvLyq16zyOIhzBMZyCB5dQg1uoQwMYDOAZXuHNkc6L8+58zFsLTj5zCH/kfP4A4n2NhQ==</latexit><latexit sha1_base64="Nv4+es+YfAUBEioR0u6u/RruPjA=">AAAB6nicbZA9SwNBEIbn4leMX1FLm8Ug2BjuRNAyaGNhEdF8QHKEvc1esmRv79idE8KRn2BjoYitv8jOf+MmuUITX1h4eGeGnXmDRAqDrvvtFFZW19Y3ipulre2d3b3y/kHTxKlmvMFiGet2QA2XQvEGCpS8nWhOo0DyVjC6mdZbT1wbEatHHCfcj+hAiVAwitZ6wLO7XrniVt2ZyDJ4OVQgV71X/ur2Y5ZGXCGT1JiO5yboZ1SjYJJPSt3U8ISyER3wjkVFI278bLbqhJxYp0/CWNunkMzc3xMZjYwZR4HtjCgOzWJtav5X66QYXvmZUEmKXLH5R2EqCcZkejfpC80ZyrEFyrSwuxI2pJoytOmUbAje4snL0DyvepbvLyq16zyOIhzBMZyCB5dQg1uoQwMYDOAZXuHNkc6L8+58zFsLTj5zCH/kfP4A4n2NhQ==</latexit><latexit sha1_base64="Nv4+es+YfAUBEioR0u6u/RruPjA=">AAAB6nicbZA9SwNBEIbn4leMX1FLm8Ug2BjuRNAyaGNhEdF8QHKEvc1esmRv79idE8KRn2BjoYitv8jOf+MmuUITX1h4eGeGnXmDRAqDrvvtFFZW19Y3ipulre2d3b3y/kHTxKlmvMFiGet2QA2XQvEGCpS8nWhOo0DyVjC6mdZbT1wbEatHHCfcj+hAiVAwitZ6wLO7XrniVt2ZyDJ4OVQgV71X/ur2Y5ZGXCGT1JiO5yboZ1SjYJJPSt3U8ISyER3wjkVFI278bLbqhJxYp0/CWNunkMzc3xMZjYwZR4HtjCgOzWJtav5X66QYXvmZUEmKXLH5R2EqCcZkejfpC80ZyrEFyrSwuxI2pJoytOmUbAje4snL0DyvepbvLyq16zyOIhzBMZyCB5dQg1uoQwMYDOAZXuHNkc6L8+58zFsLTj5zCH/kfP4A4n2NhQ==</latexit><latexit sha1_base64="Nv4+es+YfAUBEioR0u6u/RruPjA=">AAAB6nicbZA9SwNBEIbn4leMX1FLm8Ug2BjuRNAyaGNhEdF8QHKEvc1esmRv79idE8KRn2BjoYitv8jOf+MmuUITX1h4eGeGnXmDRAqDrvvtFFZW19Y3ipulre2d3b3y/kHTxKlmvMFiGet2QA2XQvEGCpS8nWhOo0DyVjC6mdZbT1wbEatHHCfcj+hAiVAwitZ6wLO7XrniVt2ZyDJ4OVQgV71X/ur2Y5ZGXCGT1JiO5yboZ1SjYJJPSt3U8ISyER3wjkVFI278bLbqhJxYp0/CWNunkMzc3xMZjYwZR4HtjCgOzWJtav5X66QYXvmZUEmKXLH5R2EqCcZkejfpC80ZyrEFyrSwuxI2pJoytOmUbAje4snL0DyvepbvLyq16zyOIhzBMZyCB5dQg1uoQwMYDOAZXuHNkc6L8+58zFsLTj5zCH/kfP4A4n2NhQ==</latexit><latexit sha1_base64="Nv4+es+YfAUBEioR0u6u/RruPjA=">AAAB6nicbZA9SwNBEIbn4leMX1FLm8Ug2BjuRNAyaGNhEdF8QHKEvc1esmRv79idE8KRn2BjoYitv8jOf+MmuUITX1h4eGeGnXmDRAqDrvvtFFZW19Y3ipulre2d3b3y/kHTxKlmvMFiGet2QA2XQvEGCpS8nWhOo0DyVjC6mdZbT1wbEatHHCfcj+hAiVAwitZ6wLO7XrniVt2ZyDJ4OVQgV71X/ur2Y5ZGXCGT1JiO5yboZ1SjYJJPSt3U8ISyER3wjkVFI278bLbqhJxYp0/CWNunkMzc3xMZjYwZR4HtjCgOzWJtav5X66QYXvmZUEmKXLH5R2EqCcZkejfpC80ZyrEFyrSwuxI2pJoytOmUbAje4snL0DyvepbvLyq16zyOIhzBMZyCB5dQg1uoQwMYDOAZXuHNkc6L8+58zFsLTj5zCH/kfP4A4n2NhQ==</latexit>

t + z � L
<latexit sha1_base64="RDqdh0qLgG9SIsXyiyAcTnpPXrc=">AAAB7HicbZBNSwMxEIZn/az1q+rRS7AIglh2RdBj0YsHDxXcttAuJZtm29BsdklmhVr6G7x4UMSrP8ib/8a03YO2vhB4eGeGzLxhKoVB1/12lpZXVtfWCxvFza3tnd3S3n7dJJlm3GeJTHQzpIZLobiPAiVvpprTOJS8EQ5uJvXGI9dGJOoBhykPYtpTIhKMorV8PH06u+uUym7FnYosgpdDGXLVOqWvdjdhWcwVMkmNaXluisGIahRM8nGxnRmeUjagPd6yqGjMTTCaLjsmx9bpkijR9ikkU/f3xIjGxgzj0HbGFPtmvjYx/6u1MoyugpFQaYZcsdlHUSYJJmRyOekKzRnKoQXKtLC7EtanmjK0+RRtCN78yYtQP694lu8vytXrPI4CHMIRnIAHl1CFW6iBDwwEPMMrvDnKeXHenY9Z65KTzxzAHzmfPyjejj4=</latexit><latexit sha1_base64="RDqdh0qLgG9SIsXyiyAcTnpPXrc=">AAAB7HicbZBNSwMxEIZn/az1q+rRS7AIglh2RdBj0YsHDxXcttAuJZtm29BsdklmhVr6G7x4UMSrP8ib/8a03YO2vhB4eGeGzLxhKoVB1/12lpZXVtfWCxvFza3tnd3S3n7dJJlm3GeJTHQzpIZLobiPAiVvpprTOJS8EQ5uJvXGI9dGJOoBhykPYtpTIhKMorV8PH06u+uUym7FnYosgpdDGXLVOqWvdjdhWcwVMkmNaXluisGIahRM8nGxnRmeUjagPd6yqGjMTTCaLjsmx9bpkijR9ikkU/f3xIjGxgzj0HbGFPtmvjYx/6u1MoyugpFQaYZcsdlHUSYJJmRyOekKzRnKoQXKtLC7EtanmjK0+RRtCN78yYtQP694lu8vytXrPI4CHMIRnIAHl1CFW6iBDwwEPMMrvDnKeXHenY9Z65KTzxzAHzmfPyjejj4=</latexit><latexit sha1_base64="RDqdh0qLgG9SIsXyiyAcTnpPXrc=">AAAB7HicbZBNSwMxEIZn/az1q+rRS7AIglh2RdBj0YsHDxXcttAuJZtm29BsdklmhVr6G7x4UMSrP8ib/8a03YO2vhB4eGeGzLxhKoVB1/12lpZXVtfWCxvFza3tnd3S3n7dJJlm3GeJTHQzpIZLobiPAiVvpprTOJS8EQ5uJvXGI9dGJOoBhykPYtpTIhKMorV8PH06u+uUym7FnYosgpdDGXLVOqWvdjdhWcwVMkmNaXluisGIahRM8nGxnRmeUjagPd6yqGjMTTCaLjsmx9bpkijR9ikkU/f3xIjGxgzj0HbGFPtmvjYx/6u1MoyugpFQaYZcsdlHUSYJJmRyOekKzRnKoQXKtLC7EtanmjK0+RRtCN78yYtQP694lu8vytXrPI4CHMIRnIAHl1CFW6iBDwwEPMMrvDnKeXHenY9Z65KTzxzAHzmfPyjejj4=</latexit><latexit sha1_base64="RDqdh0qLgG9SIsXyiyAcTnpPXrc=">AAAB7HicbZBNSwMxEIZn/az1q+rRS7AIglh2RdBj0YsHDxXcttAuJZtm29BsdklmhVr6G7x4UMSrP8ib/8a03YO2vhB4eGeGzLxhKoVB1/12lpZXVtfWCxvFza3tnd3S3n7dJJlm3GeJTHQzpIZLobiPAiVvpprTOJS8EQ5uJvXGI9dGJOoBhykPYtpTIhKMorV8PH06u+uUym7FnYosgpdDGXLVOqWvdjdhWcwVMkmNaXluisGIahRM8nGxnRmeUjagPd6yqGjMTTCaLjsmx9bpkijR9ikkU/f3xIjGxgzj0HbGFPtmvjYx/6u1MoyugpFQaYZcsdlHUSYJJmRyOekKzRnKoQXKtLC7EtanmjK0+RRtCN78yYtQP694lu8vytXrPI4CHMIRnIAHl1CFW6iBDwwEPMMrvDnKeXHenY9Z65KTzxzAHzmfPyjejj4=</latexit>

z
<latexit sha1_base64="ZxpkeWP7OiuYrtNqeUSJ8s3zMA0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3Y1QQ3+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5EpXks780kQT+iQ8lDzqixVuOpX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJr/2MyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu1mzyOIpzAKZyDB1dQgzuoQxMYIDzDK7w5D86L8+58LFoLTj5zDH/kfP4A6UOM/g==</latexit><latexit sha1_base64="ZxpkeWP7OiuYrtNqeUSJ8s3zMA0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3Y1QQ3+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5EpXks780kQT+iQ8lDzqixVuOpX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJr/2MyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu1mzyOIpzAKZyDB1dQgzuoQxMYIDzDK7w5D86L8+58LFoLTj5zDH/kfP4A6UOM/g==</latexit><latexit sha1_base64="ZxpkeWP7OiuYrtNqeUSJ8s3zMA0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3Y1QQ3+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5EpXks780kQT+iQ8lDzqixVuOpX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJr/2MyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu1mzyOIpzAKZyDB1dQgzuoQxMYIDzDK7w5D86L8+58LFoLTj5zDH/kfP4A6UOM/g==</latexit><latexit sha1_base64="ZxpkeWP7OiuYrtNqeUSJ8s3zMA0=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfRY9OKxBfsBbSib7aRdu9mE3Y1QQ3+BFw+KePUnefPfuG1z0NYXFh7emWFn3iARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e2s3n5EpXks780kQT+iQ8lDzqixVuOpX664VXcusgpeDhXIVe+Xv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtShphNrP5otOyZl1BiSMlX3SkLn7eyKjkdaTKLCdETUjvVybmf/VuqkJr/2MyyQ1KNniozAVxMRkdjUZcIXMiIkFyhS3uxI2oooyY7Mp2RC85ZNXoXVR9Sw3Liu1mzyOIpzAKZyDB1dQgzuoQxMYIDzDK7w5D86L8+58LFoLTj5zDH/kfP4A6UOM/g==</latexit>

time

space

laser

FIG. 1. The interferometer together with the spacetime di-
agram for a single crossing of a photon in the signal beam.
The interferometer at time t is contained in a causal diamond
centered at the beam splitter and with the photon path on its
null boundary.

2. Holographic principle in flat spacetime. We postu-
late that the holographic principle also applies to
Minkowski spacetime. It states that the maximal
entropy carried by the microscopic degrees of free-
dom associated with a finite region of flat spacetime
bounded by null geodesics is S = A/4GN . This
bound is saturated for a region of space whose null
boundary coincides with a horizon.

3. Universality of metric fluctuations at horizons. We
postulate that metric fluctuations near null surfaces
associated with a horizon are universal and follow
from the entropy and temperature using standard
thermodynamic considerations. This postulate im-
plies that metric fluctuations near a Rindler-type
horizon are identical to those near a black hole hori-
zon with the same temperature and entropy.

The first postulate implies that the ultraviolet Planck-
ian fluctuations accumulate in the longitudinal direction
along the interferometer arm. The second and third pos-
tulate allow us to determine the size and transversal
correlations of the length fluctuations from the metric
perturbations near the holographic surface surrounding
the interferometer. To be able to apply the third pos-
tulate we will identify the boundary of the holographic
surface with the event horizon of a (family of) Rindler
observer(s). By following a reasoning similar to what
has been considered in the context of black holes (see
Ref. [16]) we show that energy fluctuations of the holo-
graphic degrees of freedom lead to an uncertainty in the
position of the horizon. We subsequently translate this
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Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern
physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum
entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas
yet to test its quantum coherent behavior directly in a laboratory experiment. Here, we introduce an idea for
such a test based on the principle that two objects cannot be entangled without a quantum mediator. We
show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of
two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even
when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for
witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple spin
correlation measurements.

DOI: 10.1103/PhysRevLett.119.240401

Quantizing gravity is one of the most intensively pursued
areas of physics [1,2]. However, the lack of empirical
evidence for quantum aspects of gravity has lead to a debate
on whether gravity is a quantum entity. This debate
includes a significant community who subscribe to the
breakdown of quantum mechanics itself at scales macro-
scopic enough to produce prominent gravitational effects
[3–7], so that gravity need not be a quantized field in the
usual sense. Indeed it is quite possible to treat gravity as a
classical agent at the cost of including additional stochastic
noise [8–11]. Moreover, oft-cited necessities for quantum
gravity (e.g., the big bang singularity) can be averted by
modifying the Einstein action such that gravity becomes
weaker at short distances and small time scales [12]. Thus it
is crucial to test whether fundamentally gravity is a
quantum entity. Proposed tests of this question have
traditionally focused on specific models, phenomenology,
and cosmological observations (e.g., [2,13–16]) but are yet
to provide conclusive evidence. More recently, the idea of
laboratory probes (proposed originally by Bronstein
[17,18] and Feynman [19]) that emphasize the interaction
of a probe mass with the gravitational field created by
another mass [20–25], has started to take hold. However,
this approach does not yet clarify how the possible quantum
coherent nature of gravity can be unambiguously certified
in an experiment. In this Letter, we present the scheme for
an experiment that not only would certify the potential

quantum coherent behavior of gravity, but would also offer
a much more prominent witness of quantum gravity than
existing laboratory-based proposals.
We show that the growth of entanglement between two

mesoscopic test masses in adjacent matter-wave interfer-
ometers [Fig. 1(b)] can be used to certify the quantum
character of the mediator (gravitons) of the gravitational
interaction—in the same spirit as a Bell inequality certifies
the “nonlocal” character of quantum mechanics. We make
two striking observations that make the test for quantum
gravity accessible with feasible advances in interferometry:
(i) For mesoscopic test masses ∼10−14 kg (with which
interference experiments might soon be possible [26])
separated by ∼100 μm, the quantum mechanical phase
Eτ=ℏ induced by their gravitational interaction (with E
being their gravitational interaction energy, and τ ∼ 1 s
their interaction time) is significant enough to generate an
observable entanglement between the masses; (ii) if we use
test masses with embedded spins and a Stern-Gerlach
scheme [27,28] to implement our interferometry, then, at
the end of the interferometry, the gravitational interaction of
the test masses actually entangles their spins which are
readily measured in complementary bases (necessary in
order to witness entanglement). Additionally, although our
approach is independent of the specifics of any quantum
theory of gravity (in the same spirit as using entanglement
to study the nature of unknown processes [29,30]), we
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Gravitationally Induced Entanglement between Two Massive Particles is Sufficient
Evidence of Quantum Effects in Gravity
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All existing quantum-gravity proposals are extremely hard to test in practice. Quantum effects in the
gravitational field are exceptionally small, unlike those in the electromagnetic field. The fundamental
reason is that the gravitational coupling constant is about 43 orders of magnitude smaller than the fine
structure constant, which governs light-matter interactions. For example, detecting gravitons—the
hypothetical quanta of the gravitational field predicted by certain quantum-gravity proposals—is deemed
to be practically impossible. Here we adopt a radically different, quantum-information-theoretic approach
to testing quantum gravity. We propose witnessing quantumlike features in the gravitational field, by
probing it with two masses each in a superposition of two locations. First, we prove that any system (e.g., a
field) mediating entanglement between two quantum systems must be quantum. This argument is general
and does not rely on any specific dynamics. Then, we propose an experiment to detect the entanglement
generated between two masses via gravitational interaction. By our argument, the degree of entanglement
between the masses is a witness of the field quantization. This experiment does not require any quantum
control over gravity. It is also closer to realization than detecting gravitons or detecting quantum
gravitational vacuum fluctuations.

DOI: 10.1103/PhysRevLett.119.240402

Contemporary physics is in a peculiar state. The most
fundamental physical theories, quantum theory and general
relativity, claim to be universally applicable and have been
confirmed to a high accuracy in their respective domains.
Yet, it is hard to merge them into a unique corpus of laws.
We still do not have an uncontroversial proposal for
quantum gravity. Some approaches are based on applying
a quantization procedure to the gravitational field [1], in
analogy with the electromagnetic field; some others are
based on “geometrizing” quantum physics [2], while others
modify both into a more general theory (e.g., string theory
[3]) containing both quantum physics and general relativity
as special cases. All of them are affected by acute technical
and conceptual difficulties [4–6].

There is, however, an even more serious problem.
Current proposals for quantum gravity lead to seemingly
untestable predictions [7,8]. On this ground, some have
even argued that quantizing gravity is not needed after all
[9] or that gravity may not even be a fundamental force
[10,11]. Ronsenfeld summarized the problem as follows:
“the incorporation of gravitation into a general quantum
theory of fields is an open problem, because the necessary
empirical clues for deciding the question of the quantiza-
tion of the gravitational fields are missing. It is not so much
a matter here of the mathematical problem of how one
should develop a quantum formalism for gravitation, but
rather of the purely empirical question, whether the
gravitational field—and thus also the metric—evidence
quantumlike features” [12].

How would one confirm experimentally that the gravi-
tational field has “quantumlike features”? A good starting
point, though not sufficient, is a thought experiment
Feynman proposed during the Chapel Hill conference on
gravity [13]. A test mass is prepared in a superposition
of two different locations and then interacts with the
gravitational field.
Then, the gravitational field and the mass would pre-

sumably become entangled (Feynman used different ter-
minology, but that is what a fully quantum treatment would
imply). To conclude that the field must be quantized,
Feynman proposed to perform a full interference of the
mass. If the mass did interfere, Feynman’s reasoning goes,
gravity would be quantum since remerging the two spatial
branches would then reverse the coupling to gravity,
confirming the unitary dynamics in quantum theory. Of
course, Feynman also acknowledged that quantum theory
could stop applying at a certain scale. This would then
presumably constitute a new law of nature—for instance,
see the existing “gravitational collapse” literature [9,14,15].
Even if successful in showing the full interference of a

single macroscopic mass, Feynman’s thought experiment is
not enough to conclude that the gravitational field is
quantum. This is because his proposed interference only
requires that the two spatial states of the mass acquire
different phases during the experiment. These phases could
simply be induced by interaction with an entirely classical
gravitational field, without ever requiring entanglement
between the mass and the field. There is indeed a long
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We consider using the quantum correlation of light in two optomechanical cavities, which are coupled to each
other through the gravitational interaction of their end mirrors, to probe the quantum nature of gravity. The
optomechanical interaction coherently amplifies the correlation signal, and a unity signal-to-noise ratio can be
achieved within one-year integration time by using high-quality-factor, low-frequency mechanical oscillators.
Measuring the correlation can test classical models of gravity, and is an intermediate step before demonstrating
the gravity-mediated entanglement which has a more stringent requirement on the thermal decoherence rate.

Introduction.—Constructing a consistent and verifiable
quantum theory of gravity is a challenging task of mod-
ern physics [1–3], which is partially due to the di�culty in
observing quantum e↵ects of gravity. This, to certain ex-
tents, motivates some theoretical models that treat gravity as
a fundamental classical entity [4–11] or being emerged from
some yet-to-known underlying microphysics [12–15]. Prob-
ing the quantum nature of gravity experimentally is there-
fore essential for providing hints towards constructing the cor-
rect model [16, 17]. Recently, there are two experimental
proposals about demonstrating gravity-induced quantum en-
tanglement between two mesoscopic test masses in matter-
wave interferometers [18, 19], motivated by an early sugges-
tion of Feynman [20]. The setup involves two interferom-
eters located close to each other and their test masses are
entangled through the gravitational interaction. There are
some discussions regarding whether the gravity-mediated en-
tanglement in the Newtonian limit proves the quantumness
of gravity or not [21–25], because the radiative degrees of
freedom—graviton, are not directly probed in these exper-
iments. Given the lack of experimental evidence, such ex-
periments are important steps towards understanding gravity
in the quantum regime. Interestingly, they are also sensi-
tive to gravity-induced decoherence models for explaining the
quantum-to-classical transition [26–31].

The key to demonstrate the entanglement is a low thermal
decoherence rate, so the quantum coherence from the gravi-
tational interaction can build up significantly. As shown by
Eq. (25) and also Appendix A, there is an universal require-
ment on the thermal decoherence rate that is independent of
the size of the two test masses:

�mkBT  ~G⇢ . (1)

Here �m is the damping rate and also quantifies the strength
of the thermal Langevin force according to the fluctuation-
dissipation theorem [32, 33]; kB is the Boltzmann constant; T
is the environmental temperature; G is the gravitational con-
stant; ⇢ is the density of the test mass. For test masses that are
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mechanical oscillators with resonant frequency !m, it implies

T
Qm
 1.5 ⇥ 10�18K

 
1 Hz
!m/2⇡

!  
⇢

19 g/cm3

!
, (2)

where Qm ⌘ !m/�m is the mechanical quality factor and a
density close to Tungsten or Gold is assumed. This require-
ment is beyond the state-of-the-art, and needs further experi-
mental e↵orts.

In this paper, we propose an intermediate step before
demonstrating the entanglement by using optomechanical de-
vices [34, 35] to realise gravity-mediated quantum correlation
of light, which is not constrained by Eq. (1). The setup is
shown schematically in Fig. 1. Two optomechanical cavities
are placed close to each other with their end mirrors (as the
test masses) interacting through gravity. Di↵erent from the
single-photon nonlinear regime studied by Balushi et al. [36],
we are considering the linear regime with the cavity driven
by a coherent laser, and having the light (optical field) and
the mirrors (mechanical oscillators) in Gaussian states. The
quantum correlation of light is measured by cross-correlating
the homodyne readouts of two photodetectors. With the sys-
tem being in a steady state, the signal-to-noise ratio (SNR) for
the correlation measurement grows in time. As shown later in
Eq. (18), the integration time for achieving a unity SNR is

⌧ ⇡ 1.0 year
 

n̄th/C
0.4

!  
!m/2⇡
1 Hz

!3  
106

Qm

!  
19 g/cm3

⇢

!2

, (3)

where n̄th is the thermal occupation number, and C is the op-
tomechanical cooperativity. To constrain the integration time

FIG. 1. Schematics showing the setup of two optomechanical cav-
ities with their end mirrors coupled to each other through gravity.
The quantum correlation of light is inferred by cross-correlating the
readouts of two photodiodes.
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When a massive quantum body is put into a spatial superposition, it is of interest to consider
the quantum aspects of the gravitational field sourced by the body. We argue that in order to
understand how the body may become entangled with other massive bodies via gravitational
interactions, it must be thought of as being entangled with its own Newtonian-like gravitational
field. Thus, a Newtonian-like gravitational field must be capable of carrying quantum information.
Our analysis supports the view that table-top experiments testing entanglement of systems
interacting via gravity do probe the quantum nature of gravity, even if no “gravitons” are emitted
during the experiment.
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We consider using the quantum correlation of light in two optomechanical cavities, which are coupled to each
other through the gravitational interaction of their end mirrors, to probe the quantum nature of gravity. The
optomechanical interaction coherently amplifies the correlation signal, and a unity signal-to-noise ratio can be
achieved within one-year integration time by using high-quality-factor, low-frequency mechanical oscillators.
Measuring the correlation can test classical models of gravity, and is an intermediate step before demonstrating
the gravity-mediated entanglement which has a more stringent requirement on the thermal decoherence rate.

Introduction.—Constructing a consistent and verifiable
quantum theory of gravity is a challenging task of mod-
ern physics [1–3], which is partially due to the di�culty in
observing quantum e↵ects of gravity. This, to certain ex-
tents, motivates some theoretical models that treat gravity as
a fundamental classical entity [4–11] or being emerged from
some yet-to-known underlying microphysics [12–15]. Prob-
ing the quantum nature of gravity experimentally is there-
fore essential for providing hints towards constructing the cor-
rect model [16, 17]. Recently, there are two experimental
proposals about demonstrating gravity-induced quantum en-
tanglement between two mesoscopic test masses in matter-
wave interferometers [18, 19], motivated by an early sugges-
tion of Feynman [20]. The setup involves two interferom-
eters located close to each other and their test masses are
entangled through the gravitational interaction. There are
some discussions regarding whether the gravity-mediated en-
tanglement in the Newtonian limit proves the quantumness
of gravity or not [21–25], because the radiative degrees of
freedom—graviton, are not directly probed in these exper-
iments. Given the lack of experimental evidence, such ex-
periments are important steps towards understanding gravity
in the quantum regime. Interestingly, they are also sensi-
tive to gravity-induced decoherence models for explaining the
quantum-to-classical transition [26–31].

The key to demonstrate the entanglement is a low thermal
decoherence rate, so the quantum coherence from the gravi-
tational interaction can build up significantly. As shown by
Eq. (25) and also Appendix A, there is an universal require-
ment on the thermal decoherence rate that is independent of
the size of the two test masses:

�mkBT  ~G⇢ . (1)

Here �m is the damping rate and also quantifies the strength
of the thermal Langevin force according to the fluctuation-
dissipation theorem [32, 33]; kB is the Boltzmann constant; T
is the environmental temperature; G is the gravitational con-
stant; ⇢ is the density of the test mass. For test masses that are
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mechanical oscillators with resonant frequency !m, it implies

T
Qm
 1.5 ⇥ 10�18K

 
1 Hz
!m/2⇡

!  
⇢

19 g/cm3

!
, (2)

where Qm ⌘ !m/�m is the mechanical quality factor and a
density close to Tungsten or Gold is assumed. This require-
ment is beyond the state-of-the-art, and needs further experi-
mental e↵orts.

In this paper, we propose an intermediate step before
demonstrating the entanglement by using optomechanical de-
vices [34, 35] to realise gravity-mediated quantum correlation
of light, which is not constrained by Eq. (1). The setup is
shown schematically in Fig. 1. Two optomechanical cavities
are placed close to each other with their end mirrors (as the
test masses) interacting through gravity. Di↵erent from the
single-photon nonlinear regime studied by Balushi et al. [36],
we are considering the linear regime with the cavity driven
by a coherent laser, and having the light (optical field) and
the mirrors (mechanical oscillators) in Gaussian states. The
quantum correlation of light is measured by cross-correlating
the homodyne readouts of two photodetectors. With the sys-
tem being in a steady state, the signal-to-noise ratio (SNR) for
the correlation measurement grows in time. As shown later in
Eq. (18), the integration time for achieving a unity SNR is

⌧ ⇡ 1.0 year
 

n̄th/C
0.4

!  
!m/2⇡
1 Hz

!3  
106

Qm

!  
19 g/cm3

⇢

!2

, (3)

where n̄th is the thermal occupation number, and C is the op-
tomechanical cooperativity. To constrain the integration time

FIG. 1. Schematics showing the setup of two optomechanical cav-
ities with their end mirrors coupled to each other through gravity.
The quantum correlation of light is inferred by cross-correlating the
readouts of two photodiodes.
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show, in Supplemental Material [31], that off-diagonal
terms between coherent states (a signature of the quantum
superposition principle) of the Newtonian gravitational
field are necessary for the development of the entanglement
between the test masses.
Our proposal relies on two simple assumptions: (a) the

gravitational interaction between two masses is mediated
by a gravitational field (in other words, it is not a direct
interaction at a distance) and (b) the validity of a central
principle of quantum information theory: entanglement
between two systems cannot be created by local operations
and classical communication (LOCC) [38]. It can readily
be proved that, in the absence of closed timelike loops [39]
(i.e., under the assumption of validity of the chronology
protection conjecture [40]) and as long as the notion of
classicality itself is not extended significantly [41], LOCC
keeps any initially unentangled state separable. Translating
to our setting of two test masses in adjacent interferometers
any external fields (including the gravitational fields from
other masses around them) can only make LOs on their
states, while a classical gravitational field propagating
between the test masses can only give a CC channel
between them. These LOCC processes cannot entangle
the states of the masses. Thus it immediately follows that
if the mutual gravitational interaction entangles the state of
two masses, then the mediating gravitational field is
necessarily quantum mechanical in nature.

Entanglement due to gravitational interaction.—We first
consider a schematic version that clarifies how the states of
two neutral test masses 1 and 2 (masses m1 and m2), each
held steadily in a superposition of two spatially separated
states jLi and jRi as shown in Fig. 1(a) for a time τ, get
entangled. Imagine the centers of jLi and jRi to be
separated by a distance Δx, while each of the states jLi
and jRi is a localized Gaussian wave packet with widths
≪ Δx so that we can assume hLjRi ¼ 0. There is a
separation d between the centers of the superpositions as
shown in Fig. 1(a) so that even for the closest approach of
the masses (d − Δx), the short-range Casimir-Polder force
is negligible. Distinct components of the superposition
have distinct gravitational interaction energies as the
masses are separated by different distances and thereby
have different rates of phase evolution. Under these
circumstances, the time evolution of the joint state of the
two masses is purely due to their mutual gravitational
interaction, and given by

jΨðt ¼ 0Þi12 ¼
1ffiffiffi
2

p ðjLi1 þ jRi1Þ
1ffiffiffi
2

p ðjLi2 þ jRi2Þ ð1Þ

→ jΨðt ¼ τÞi12 ¼
eiϕffiffiffi
2

p
"
jLi1

1ffiffiffi
2

p ðjLi2 þ eiΔϕLR jRi2Þ

þ jRi1
1ffiffiffi
2

p ðeiΔϕRL jLi2 þ jRi2Þ
#
; ð2Þ

where ΔϕRL ¼ ϕRL − ϕ, ΔϕLR ¼ ϕLR − ϕ, and

ϕRL ∼
Gm1m2τ
ℏðd − ΔxÞ

; ϕLR ∼
Gm1m2τ
ℏðdþ ΔxÞ

;

ϕ ∼
Gm1m2τ

ℏd
:

One can now think of each mass as an effective “orbital
qubit” with its two states being the spatial states jLi and
jRi, which we can call orbital states. As long as
1=

ffiffiffi
2

p
ðjLi2 þ eiΔϕLR jRi2Þ and 1=

ffiffiffi
2

p
ðeiΔϕRL jLi2 þ jRi2Þ

are not the same state (which is very generic, happening
for any ΔϕLR þ ΔϕRL ≠ 2nπ, with integral n), it is clear
that the state jΨðt ¼ τÞi12 cannot be factorized and is
thereby an entangled state of the two orbital qubits.
Witnessing this entanglement then suffices to prove that
a quantum field must have mediated the gravitational
interaction between them.
It makes sense to start with particles of the largest

possible masses, namely, m1 ∼m2 ∼ 10−14 kg for which
there have already been realistic proposals for creating
superpositions of spatially separated states such as jLi and
jRi [26]. Note that we are constrained to design an
experiment in which only the gravitational interaction is
active. This means that the allowed distance of closest
approach is d − Δx ≈ 200 μm, which is the distance at
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FIG. 1. Adjacent interferometers to test the quantum nature of
gravity: (a) Two test masses held adjacently in superposition of
spatially localized states jLi and jRi. (b) Adjacent Stern-Gerlach
(SG) interferometers in which initial motional states jCij of
masses are split in a spin dependent manner to prepare states
jL;↑ij þ jR;↓ij (j ¼ 1, 2). Evolution under mutual gravitational
interaction for a time τ entangles the test masses by imparting
appropriate phases to the components of the superposition. This
entanglement can only result from the exchange of quantum
mediators—if all interactions aside gravity are absent, then this
must be the gravitational field (labeled h00 where hμν are weak
perturbations on the flat space-time metric ημν). This entangle-
ment between test masses evidencing quantized gravity can be
verified by completing each interferometer and measuring spin
correlations.
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Kafri-Taylor-Milburn Model
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All objects monitored continuously in order to generate gravity!

Universal noise at much higher level imposed on all objects!






