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Probing Position of Test Mass

 Continuous measurement of position Increasing Light Power
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Laser Interferometer
Gravitational-Wave Observatory




“Beyond Heisenberg Uncertainty”
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Quantum Correlation between light and mass,
manipulated by injected squeezed vacuum,
allows quantum noise below Standard Quantum Limit
[Unruh, 1980s]
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Optomechanical Systems
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Levitated Quantum Objects
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Towards Quantum Gravity

We are already observing space-time geometry around black holes and
macroscopic objects in the quantum regime

“Stern-Gerlach Experiment” with large masses: is there limit on how massive a

“quantum object” can be? Gravity?

Can quantum
superpositions form

and evolve following
‘ the same laws?

massive
>
object(s) ‘

Weak-force detection limited by Heisenberg Uncertainty: is there “fundamental
quantum limit to sensitivity”? Space-time Fluctuations?

distance fluctuations due to quantum gravity?




Quantum Nature of Gravity?
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Schrodinger Equation

“If quantum information can pass from A to B through ¢, then gravity must be quantum.”

[Wald and Carney Talk]

If Gravity is classical, self-gravitating objects will not be completely quantum.

[e.g., Feynman, Lectures on Gravitation, 1957]

Effect is very weak; time scale is very long! [Kafri & Taylor, 2014]

Gravity
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Schrodinger-Newton Equation

V2P = 4nG(p) = Pp(x) = — /dsyiiﬁ_(y»

ih8t¢(x1, 50 0 ,Xn) = H0¢(x1, “ .

[Moller 1962, Rosenfeld 1963; Kibble 1976; ... ; Guilini 2012; H. Yang et al., 2013]

Quantum “Self Gravity”
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particle carries own gravity field

Classical “Self Gravity”
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unique classical field

wave packet attracted by its own potential

Since wavefunction y now gravitates, it becomes “physical reality”
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center of mass

a macroscopic crystal made up
from atoms
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Birgitta Whaley & Jordan Wilson-Gerow talks 10
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Schrodinger-Newton Equation
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Naive Schrodinger-Newton Phenomenology
= p/M
p = —Mwiyt — Mwsy (2 — ()

Quantum noise ellipse rotate at a different frequency:
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Will lead to experimental signatures!
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Do we collapse the quantum state?
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Don Page’s Thought Experiment

Counter 1 _ _
| according to which ®
Beam counter clicks
Don Page personally
- places the ball ®
Counter 2

‘up >ba11 T ‘2 >y Gt

J2

Expected Gravity of the Balls Average Out!

Gravity must depend on Results of Measurement
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Gravity Must Depend Results of
Measurement

H A, A= 2]y

Hamiltonian depends on quantum state

Nonlinear QM

time 4+
t N N / Instantaneous State Reduction
l

superluminal communication

Polchinski 1991

B will feel
>
| > the effect Loophole
msm:‘t“”etois right away! > Hamiltonian can depend on
uantum state .
A 1 . B measurement results, instead of
reduction .
> space directly on states.

> Dependence can be causal.
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Gravity as Measurement-Based
Quantum Feedback

State Information

Collapse Gain
Measurement
Plant + Controller

Record
Hy+V % ()

| Classical Filter I

C
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dp = — E[H,p]dt — ?[x, (X, pl] + Ea(xp + pxX — 2(X)p)dW + V[{y(t) < t}]

dy = a(x)dt + dW
Nonlinear, and breaks linear superposition!
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Classical Gravity as Quantum Feedback
_N_
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Measure!

\/

AVA

I

Bassam Helou

/ \ 2017 & 2019

Each “actuator” generates gravity according to results inside its past light cone.

Fundamental Questions Remain: What is a Measurement?
Light that is “lost”, are they measured? which variables measured?
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Optomechanical Signatures
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[Yubao Liu, Haixing Miao, Yanbei Chen and Yiqiu Ma, 2022]
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Optomechanical Signatures
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Testing Nature of Gravity?
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Measure Measure
Amplitude < > Phase
Modulation still Modulation
correlated!!

correlations deviate from quantum-gravity prediction
only at (wgn/®,,)* order

[Yubao Liu, Haixing Miao, Yanbei Chen and Yigiu Ma, 2022]
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Space-Time Fluctuations

end
mirror

Verlinde and Zurek ¢+ Mechanism proposed by Verlinde and
beam end Zurek.

splitter mirror
signal beam ﬂ

GQUuEST experiment at Caltech (Lee
McCuller)

uses photon counting instead of
homodyne detection
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Space-Time Fluctuations

Fluctuation in linear size of causal

diamonds ~ lpL

Random walk along edges of the causal
diamond

Time scale of coherence ~ L/c

Two overlapping causal diamond are
correlated

Effective theory generates fluctuations
measured by realistic interferometer
configurations. [Zurek, 2022 and on-going
work.]

Rana Adhikari’s talk
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Collaborators

Yubao Liu, Yiqiu Ma ( ), Haixing Miao
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Testing Quantum Nature of Gravity

k endi
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Information Content of the Gravitational Field of a Quantum Superposition . . . .
Using Newtonian Gravity Field to
Alessio Belenchia,'>* Robert M. Wald,> ! Flaminia Giacomini,? .
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https://arxiv.org/pdf/1905.04496.pdf
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Kafri-Taylor-Milburn Model
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All objects monitored continuously in order to generate gravity!
Universal noise at much higher level imposed on all objects!
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